Evidence for ERK1/2 activation by thrombin that is independent of EGFR transactivation.
نویسندگان
چکیده
Thrombin is involved in abnormal proliferation of vascular smooth muscle cells (VSMCs) associated with pathogenic vascular remodeling. Thrombin stimulation results in extracellular signal-regulated kinase (ERK)1/2 activation through transactivation of the epidermal growth factor receptor (EGFR). Here, using specific antibodies and inhibitors, we investigated the thrombin-induced phosphorylation of Src family kinases, nonreceptor proline-rich tyrosine kinase (Pyk2), EGFR, and ERK1/2. Our results show that Src and Pyk2 are involved upstream of the EGFR transactivation that is required for ERK1/2 phosphorylation. The investigation of the role of intracellular calcium concentration ([Ca2+]i) and calcium mobilization with the Ca2+ chelator BAPTA and thapsigargin, respectively, indicated that thrombin- and thapsigargin-induced phosphorylation of the EGFR but not ERK1/2 is dependent on an increase in [Ca2+]i. Moreover, only after BAPTA-AM pretreatment was thrombin-induced activation of ERK1/2 partially preserved from the effects of EGFR and PKC inhibition but not Src family kinase inhibition. These results suggest that BAPTA, by preventing [Ca2+]i elevation, unmasks a new pathway of Src family kinase-dependent thrombin-stimulated ERK1/2 phosphorylation that is independent of EGFR and PKC activation.
منابع مشابه
Protein kinase C-{alpha} mediates epidermal growth factor receptor transactivation in human prostate cancer cells.
Progression of human prostate cancer to a malignancy that is refractory to androgen-ablation therapy renders the disease resistant to available treatment options and accounts for the high prostate cancer mortality rate. Epidermal growth factor receptor (EGFR) expression in human prostate cancer specimens increases with disease progression to androgen-refractory prostate cancer, and experimental...
متن کاملActivation of proteinase-activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation.
Serine proteases are now considered as crucial contributors to the development of human colon cancer. We have shown recently that thrombin is a potent growth factor for colon cancer cells through activation of the aberrantly expressed protease-activated receptor 1 (PAR1). Here, we analyzed the signaling pathways downstream of PAR1 activation, which lead to colon cancer cell proliferation in HT-...
متن کاملProtein kinase C-A mediates epidermal growth factor receptor transactivation in human prostate cancer cells
Progression of human prostate cancer to a malignancy that is refractory to androgen-ablation therapy renders the disease resistant to available treatment options and accounts for the high prostate cancer mortality rate. Epidermal growth factor receptor (EGFR) expression in human prostate cancer specimens increases with disease progression to androgen-refractory prostate cancer, and experimental...
متن کاملH2O2-induced transactivation of EGF receptor requires Src and mediates ERK1/2, but not Akt, activation in renal cells.
Although oxidative stress activates epidermal growth factor receptor (EGFR), ERK1/2, and Akt in a number of cell types, the mechanisms by which oxidative stress activates these kinases are not well defined in renal epithelial cells. Exposure of primary cultures of rabbit renal proximal tubular cells to hydrogen peroxide (H(2)O(2)) stimulated Src, EGFR, ERK1/2, and Akt activation in a time-depen...
متن کاملThrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways.
Protease-activated receptors (PARs), newly identified members of G protein-coupled receptors, are widely distributed in the brain. Thrombin evokes multiple cellular responses in a large variety of cells by activating PAR-1, -3, and -4. In cultured rat astrocytes we investigated the signaling pathway of thrombin- and PAR-activating peptide (PAR-AP)-induced cell proliferation. Our results show th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 285 2 شماره
صفحات -
تاریخ انتشار 2003